Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Cyclohexylammonium 2'-hydroxy-2biphenyl phosphonate

K. C. Kumara Swamy* and Musa A. Said

School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
Correspondence e-mail: kckssc@uohyd.ernet.in
Received 22 November 2000
Accepted 16 January 2001

In the molecular structure of the title compound, $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}^{+}$.$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{P}^{-}$, three O atoms are bonded to phosphorus. The oxygen connected to the biphenoxy residue is not involved in hydrogen bonding; of the other two, one oxygen is involved in intermolecular hydrogen bonding to an $\mathrm{N}-\mathrm{H}$ group as well as the $\mathrm{O}-\mathrm{H}$ group of the biphenoxy residue, while the second oxygen is involved in hydrogen bonding to two $\mathrm{N}-\mathrm{H}$ groups.

Comment

We have been interested in hydrolytic pathways of cyclic phosphites, phosphates and phosphoranes (Said et al., 1995, 1997; Vijjulatha et al., 1998; Kumara Swamy et al., 1998). In cyclic phosphites of the type ($\mathrm{O}-R-\mathrm{O}) \mathrm{P}\left(\mathrm{NH} R^{\prime}\right)(R$ as part of a ring), hydrolysis can lead to the cleavage of either the $\mathrm{P}-\mathrm{N}$ or $\mathrm{P}-\mathrm{O}$ bond leading to different sets of products. Double hydrolysis can also take place resulting in the cleavage of both the $\mathrm{P}-\mathrm{N}$ bond and a $\mathrm{P}-\mathrm{O}$ bond of the ring containing phosphorus. The resulting compound, in this case, will be a phosphonic acid with a $\mathrm{P}(\mathrm{O})-\mathrm{H}$ moiety formed by the tautomerization of the $\mathrm{P}-\mathrm{OH}$ bond. The amine liberated during the hydrolysis will form a salt and the present compound, (I) (Fig. 1), is one such compound, prepared by the hydrolysis of the aminophosphite $\left(2,2^{\prime}-\mathrm{OC}_{6} \mathrm{H}_{4}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\right) \mathrm{P}\left(\mathrm{NHC}_{6} \mathrm{H}_{11}\right)$.

The $\mathrm{P}-\mathrm{O}$ bond distances are normal (Holmes et al., 1992) and the one with the oxygen connected to the $2,2^{\prime}$-biphenoxy residue is the longest, as expected. The $\mathrm{P}-\mathrm{H}$ distance [1.31 (5) \AA] is also in the previously observed range (Vijjulatha et al., 1999; Thompson et al., 1982), but is longer than that observed in compounds with a P(S)H moiety $[1.20$ (4) \AA]
(Potrzebowski et al., 1995). Obviously hydrogen-bonding interactions are present in (I) (Fig. 2). Both O1 and O2, which are bonded to phosphorus, exhibit intermolecular hydrogenbonding interactions to two H atoms each. Atom O 1 is hydrogen bonded to O 4 and an NH proton, while O 2 is hydrogen bonded to two $\mathrm{N}-\mathrm{H} \mathrm{H}$ atoms from different amino residues. It can be noted that in the pyridinium salt $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}\right]^{+}\left[\mathrm{PhPO}_{2}\left(1,2-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OH}\right)\right]^{-} \cdot 1,2-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2} \quad$ also,

Figure 1
The molecular structure of (I) showing the atom-numbering scheme. All non-H atoms are represented by 25% probability displacement ellipsoids.
both the phosphoryl O atoms are each hydrogen bonded to two other H atoms (Poutasse et al., 1986). The O1…O4 distance $\left[2.717(7) \AA\right.$] is close to that found in $\left(\mathrm{OCH}_{2}\right.$ $\left.\mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{O}\right) \mathrm{P}(\mathrm{O})\left(2,2^{\prime}-\mathrm{OC}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}\right)$, (II) [2.702 (2) \AA; Kumara Swamy et al., 1998]. Another point about the hydrogen bond is related to the angle subtended at O 1 and O 2

Figure 2
Hydrogen-bonding scheme in (I). For clarity, phosphonate units with symmetry $(x, y, z-1),(x, y, z)$ and $(x, y, z+1)$ and cyclohexyl ammonium moieties with symmetry $\left(\frac{1}{2}-x, y-1, z-\frac{1}{2}\right),\left(\frac{1}{2}-x, y-1, z+\frac{1}{2}\right)$ and $\left(x-\frac{1}{2}, y-1, z\right)$ only are shown.
with the two hydrogen-bonded partners [$\mathrm{N} \cdots \mathrm{O} 1 \cdots \mathrm{O} 48$ and $\mathrm{N} \cdots \mathrm{O} 2 \cdots \mathrm{~N} 100.2^{\circ}$], which shows a difference of nearly 20°. Such a feature might be of some interest in connection with the charge-density distribution at the acceptor atoms.

Experimental

Water (3 ml) was added directly to $\left(\mathrm{OC}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\right) \mathrm{P}\left(\mathrm{NHC}_{6} \mathrm{H}_{11}\right)$ $(1.30 \mathrm{~g}, 4.15 \mathrm{mmol})$ to give the title compound. Needle-shaped crystals grew over a period of 3 d from the aqueous solution [yield 1.35 g (93%), m.p. 453 K$]$. Analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{P}: \mathrm{C} 61.89$, H 6.88, N 4.01%; found: C 62.18, H 7.05, N 4.09%. IR (cm^{-1}): 2391 (PH). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): 1.00-2.00 ($m, 10 \mathrm{H}$, cyclohexyl- CH_{2}), 2.85 $(m, \mathrm{NCH}), 3.10-4.20(b r, 1 \mathrm{H}, \mathrm{OH}), 6.82\left[d,{ }^{1} J(\mathrm{P}-\mathrm{H})=606 \mathrm{~Hz}, \mathrm{PH}\right]$, $6.70-7.40(m, 8 H, A r-H), 8.10\left(s, 3 H\right.$, cyclohexyl-NH ${ }_{3}{ }^{+}$) p.p.m. ${ }^{13} \mathrm{C}$ NMR: 23.8, 24.6, 30.2, 49.1, 115.8, 116.9, 118.6, 121.2, 122.2, 125.9, 127.8, 128.0, 128.2, 131.1, 131.4, 137.6, 154.5, 154.8 p.p.m. ${ }^{31}$ P NMR: 2.98 p.p.m.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}^{+} \cdot \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{P}^{-}$
Mo $K \alpha$ radiation
$M_{r}=349.35$
Orthorhombic, Pca2
$a=30.992$ (7) \AA
$b=8.613$ (4) \AA
$c=6.721$ (7) \AA
$V=1794(2) \AA^{3}$
$Z=4$
$D_{x}=1.293 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffract-

$$
\theta_{\max }=25.01^{\circ}
$$ ometer

$h=0 \rightarrow 36$
Profile data from ω scans
$k=0 \rightarrow 10$
1706 measured reflections
1705 independent reflections
1309 reflections with $I>2 \sigma(I)$
$l=0 \rightarrow 7$
3 standard reflections frequency: 90 min intensity decay: none

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{P}-\mathrm{O} 1$	$1.482(5)$	$\mathrm{P}-\mathrm{O} 3$	$1.592(5)$
$\mathrm{P}-\mathrm{O} 2$	$1.473(5)$		
$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 1$	$119.9(3)$	$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 3$	$110.5(3)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 3$	$103.9(3)$		

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} C \cdots \mathrm{O} 1^{\mathrm{i}}$	0.89	1.94	$2.811(8)$	167
$\mathrm{~N}-\mathrm{H} B \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.89	2.03	$2.920(8)$	175
$\mathrm{~N}_{\mathrm{H}} \mathrm{H} A \cdots 2^{\mathrm{iii}}$	0.89	1.89	$2.775(7)$	176
$\mathrm{O}^{2}-\mathrm{HO} 4 \cdots \mathrm{O}^{\mathrm{iv}}$	$0.74(13)$	$1.98(13)$	$2.717(7)$	$175(15)$

Symmetry codes: (i) $\frac{1}{2}-x, 1+y, z-\frac{1}{2}$; (ii) $\frac{1}{2}-x, 1+y, \frac{1}{2}+z$; (iii) $\frac{1}{2}+x, 1-y, z$; (iv) $x, y, z-1$.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0925 P)^{2} \\
&+1.9000 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.177$
$S=1.137$
1705 reflections
226 parameters

H atoms: see text
H atoms were placed geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ constrained to 0.93 and $0.89 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}(\mathrm{N})$, respectively. The H atoms connected to the P and O 4 atoms were picked up by a difference map and were refined isotropically.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: Structure Determination Package (Frenz, 1985); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX6a (McArdle, 1995); software used to prepare material for publication: SHELXL97.

Funding for this work was provided by the Council of Scientific and Industrial Research, New Delhi, India.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: VJ1128). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Frenz, B. A. (1985). Structure Determination Package. Texas A \& M University, College Station, Texas, and Enraf-Nonius, Delft, The Netherlands.
Holmes, R. R., Day, R. O., Yoshida, Y. \& Holmes, J. M. (1992). J. Am. Chem. Soc. 114, 1771-1778.
Kumara Swamy, K. C., Said, M. A., Kumara Swamy, S., Herbst-Irmer, R. \& Puelm, M. (1998). Polyhedron, 17, 3643-3648.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Potrzebowski, M., Vereshchagina, J., Michalski, J., Wieczorek, M. W. \& Majzner, W. (1995). J. Chem. Soc. Dalton Trans. pp. 3683-3690.
Poutasse, C. A., Day, R. O. \& Holmes, R. R. (1986). J. Am. Chem. Soc. 106, 3814-3820.
Said, M. A., Kumara Swamy, K. C., Veith, M. \& Huch, V. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 2945-2951.
Said, M. A., Puelm, M., Herbst-Irmer, R. \& Kumara Swamy, K. C. (1997). Inorg. Chem. 36, 2044-2051.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Thompson, M. L., Haltiwanger, R. C., Tarassoli, A., Coons, D. E. \& Norman, A. D. (1982). Inorg. Chem. 21, 1287-1292.

Vijjulatha, M., Kumara Swamy, K. C., Vittal, J. J. \& Koh, L. L. (1999). Polyhedron, 18, 2249-2254.
Vijjulatha, M., Praveen Kumar, K., Kumara Swamy, K. C. \& Vittal, J. J. (1998). Tetrahedron Lett. 39, 1819-1822.

